Skip to main content

Featured post

Breathing Exercises: Types, Techniques and Benefits

Breathing Exercises: Exercises for the lungs also referred to as breathing exercises , are essential for improving lung function and promoting respiratory health. These exercises are intended to strengthen respiratory muscles, increase lung capacity, and enhance the body's ability to exchange oxygen and carbon dioxide. These breathing techniques are frequently used in medical settings: Diaphragmatic Breathing Pursed lip Breathing Segmental Breathing Diaphragmatic Breathing: The diaphragm , a dome-shaped muscle situated below the lungs, is used actively during diaphragmatic breathing, also referred to as deep belly breathing or abdominal breathing . By fully contracting the diaphragm, this technique focuses on expanding the lower part of the lungs, enabling deeper and more effective inhalation and exhalation. Technique: Look for a quiet location where you can sit or lie down. You can close your eyes to improve relaxation and focus. Put one hand on your upper chest and the other on

What is Repetition Maximum ?

One method of measuring the effectiveness of a resistance exercise program and calculating an appropriate exercise load for training is to determine a repetition maximum. This term was first reported decades ago by DeLorme in his investigations of an approach to resistance training called progressive resistive exercise (PRE).

 A repetition maximum (RM) is defined as the greatest amount of weight (load) a muscle can move through the full, available ROM with control a specific number of times before fatiguing.

Use of a repetition maximum. 

There are two main reasons for determining a repetition maximum:

  1. To document a baseline measurement of the dynamic strength of a muscle or muscle group against which exercise-induced improvements in strength can be compared,
  2. To identify an initial exercise load (amount of weight) to be used during exercise for a specified number of repetitions. DeLorme reported use of a 1-RM (the greatest amount of weight a subject can move through the available ROM just one time) as the baseline measurement of a subject’s maximum effort but used a multiple RM, specifically a 10-RM, (the amount of weight that could be lifted and lowered 10 times through the ROM) during training.

Despite criticism that establishing a 1-RM involves some trial and error, it is a frequently used method for measuring muscle strength in research studies and is a safe and reliable measurement tool with healthy young adults and athletes as well as active older adults before beginning conditioning programs.

Test Your 1RM: Step by Step

  •  Choose which move you are going to test (squat, bench press, etc.)
  •  Warm-up with light cardio activity and dynamic stretching for at least 15 to 30 minutes.
  •  Do six to 10 reps of your chosen move, using a weight that's about half of what you think your max will be. Then rest for at least one to two minutes.
  •  Increase the weight up to 80% of what you think your max might be. Do three reps, then rest for at least one minute.
  •  Add weight in approximately 10% increments and attempt a single rep each time, resting for at least one to two minutes in between each attempt.
  •  The maximum weight you can successfully lift, with good form and technique, is your 1RM.


PRECAUTION: Use of a 1-RM as a baseline measurement of dynamic strength is inappropriate for some patient populations because it requires one maximum effort. It is not safe for patients, for example, with joint impairments, patients who are recovering from or who are at risk for soft tissue injury, or patients with known or at risk for osteoporosis or cardiovascular pathology. Also, allow twenty-four hours of rest time for a muscle before performing a 1RM test. Don't perform this test in the afternoon if you had a morning workout of the same muscle group.

Comments

Popular posts from this blog

What is Anatomical pulley? Example of Anatomical pulley

Understanding the Importance of Anatomical Pulleys in Physiotherapy As a physiotherapy student, it is essential to have a good understanding of the human body's anatomy and how it works. One of the essential structures in the body that plays a significant role in movement and biomechanics is the anatomical pulley. In this article, we will explore what an anatomical pulley is, its types, and its importance in physiotherapy. What is an Anatomical Pulley? A pulley is a simple mechanical machine that consists of a wheel that turns readily on the axle, usually grooved for a rope or a wire cable. In the human body, the pulley is replaced by a bone, cartilage, or ligament, and the cord is replaced by a muscle tendon. The tendon is lubricated by synovial fluid, and the surface of the tendon is covered by a thin visceral synovial membrane. The tendon is lubricated so that it may easily slide over the pulley. Classification of Anatomical Pulleys There are mainly four classes of pulleys

Electrotherapy Simplified by Basanta Kumar Nanda PDF Download

Electrotherapy Simplified  by Basanta Kumar Nanda The aim of this book is to focus on the electrotherapy simplified. Electrotherapy is one of the important aspects among the various approaches of patient management available to a physiotherapist. Electrotherapy Simplified has tried to give comprehensive knowledge on electrotherapy and actinotherapy, starting from basic electricity and magnetism to the theoretical and clinical aspects of the different modalities applied by physiotherapists.  This book consists of 19 chapters, which include an introduction, inflammation, repair, and role of physical agents, electrical fundamentals, magnetic energy, valves, transistors, and rectifiers, electrical measurement systems and distribution of electricity, electrophysiology of nerve transmission, and muscle contraction, low-frequency currents, electrodiagnosis, medium frequency currents, low-intensity laser therapy, ultraviolet radiation, and traction.  About 250 objective question answers have b

Base of Support (BOS) in Physiotherapy

The base of support means the area supported beneath the object. Whenever the base of support is more the stability will be more.  Greater the BOS lower the COG of any object. For example, the fundamental position of standing the BOS is lesser than the lying, so COG in the standing position it is in the higher level whereas in the lying posture it will be just near to the ground as a result lying posture is more stable than any other fundamental position and also it can be maintained for the longer period. The stability is directly proportional to BOS and inversely proportional to COG.